Eclipse


DevOps ok? Voici DevEE!

Pour comprendre comment envisager la collaboration entre les développeurs et les électroniciens, je vous invite à aller lire cet article publié sur le blog de Valtech : DevOps ok? Voici DevEE!


Fichier(s) joint(s) :



Arduino Ethernet avec module ENC28J60

J'ai récemment acquis des cartes Ethernet de chez Velleman, dédiées à l'Arduino : VMA04

Elles ont le mérite d'êtres moins chères, de par leur fabrication et aussi par l'absence de slot SD. Mais il n'est pas si simple de trouver une bonne librairie pour l'utiliser, celle disponible dans la distribution Arduino ne fonctionnant qu'avec un module W5100.

Après de longues recherches, mon choix s'est orienté vers UIPEthernet, présentée ici : Arduino et enc28j60 : EtherCard ou UIPEthernet

Et pour la faire fonctionner avec un Arduino Mega, il faut modifier quelque peu le code comme expliqué dans la page liée, mais avec les valeurs suivantes (dans le fichier fichier utility/Enc28J60Network.h) :

#define ENC28J60_CONTROL_CS     10
#define SPI_MOSI        MOSI
#define SPI_MISO        MISO
#define SPI_SCK         SCK
#define SPI_SS          SS

Hope this helps!


Fichier(s) joint(s) :



Un client CoAP simple en C

CoAP est un protocole de communication dédié aux objets connectés : basé sur UDP et REST, il permet de diminuer au maximum le contenu des messages pour économiser les ressources des objets lors des transferts de données.

Nous allons voir ici comment implémenter votre propre client, à l'aide de la spécification du protocole. Le but est d'être capable d'envoyer, de la manière la plus simple possible, des données à un serveur CoAP exposant des services. Niveau matériel, un Arduino Mega avec un shield Ethernet communique avec un serveur Java.

Commençons par la structure des messages. Ce chapitre de la spécification nous explique comment les structurer :

8 bits 8 bits 8 bits 8 bits
Ver T TKL Code Message ID
Token
Options
Terminator Payload

Je vous laisse vous référer à la spécification pour la signification des champs. Un peu plus en détails, les Options suivent un format propre :

8 bits 8 bits 8 bits 8 bits
Ver T TKL Code Message ID
Token
Delta Length Value
Terminator Payload

Ici nous allons construire un message contenant :

  • version : 1
  • type : Request
  • TKL : 0 (pas de Token)
  • Code : POST
  • vers le service : "/sensors"
  • contenu : "test"

Voici ce que cela donne :

8 bits 8 bits 8 bits 8 bits
1 Request 0 POST Message ID
 
Uri-Path 7 URI segment "sensors"
Terminator "test"

Chaque Option possède un code "Option Number" propre. Par exemple, "Uri-Path" qui permet d'indiquer un segment de l'adresse du service, a pour code 11. Le Delta se calcule alors en additionnant le code de l'option avec celles des précédentes :

8 bits 8 bits 8 bits 8 bits
1 Request 0 POST Message ID
 
0+11 7 "sensors"
Terminator "test"

Si l'on veut spécifier plusieurs options du même type, il n'est pas nécessaire d'additionner le code. Par exemple, pour pointer sur le service "/sensors/temp" :

8 bits 8 bits 8 bits 8 bits
1 Request 0 POST Message ID
 
0+11 7 "sensors"
0+11+0 4 "temp"
Terminator "test"

En revanche, pour une autre Option, par exemple "Max-Age" qui a le code 14 :

8 bits 8 bits 8 bits 8 bits
1 Request 0 POST Message ID
 
0+11 7 "sensors"
0+11+14 2 12
Terminator "test"

Revenons à notre exemple et transformons tout en valeurs selon la spec et notre cas :

8 bits 8 bits 8 bits 8 bits
1 1 0 0.02 52942
 
11 7 "sensors"
Terminator "test"

Ce qui nous donne, en binaire en respectant la longueur des champs (pour les champs les plus simples) :

8 bits 8 bits 8 bits 8 bits
01 01 00000 00000010 1100111011001110
 
1011 0111 "sensors"
11 11 1111 "test"

Enfin, pour se faciliter l'envoi via le contrôleur Ethernet, dont la librairie est prévue pour traiter des "char" sur 8 bits, il suffit de transformer le résultat en concaténant les bits par 8 :

8 bits 8 bits 8 bits 8 bits
0x50 0x02 0xCE 0xCE
 
0xB7 "sensors"
0xFF "test"

En pratique, un petit exemple de code Arduino pour envoyer nos données :

#include <SPI.h>
#include <Ethernet.h>
#include <EthernetUdp.h>

char coapacket[18];
EthernetUDP udp;

void loop() {
  coapacket[0] = 0x50;
  coapacket[1] = 0x02;
  coapacket[2] = 0xce;
  coapacket[3] = 0xce;
  coapacket[4] = 0xB7;
  coapacket[5] = 's';
  coapacket[6] = 'e';
  coapacket[7] = 'n';
  coapacket[8] = 's';
  coapacket[9] = 'o';
  coapacket[10] = 'r';
  coapacket[11] = 's';
  coapacket[12] = 0xff;
  coapacket[13] = 't';
  coapacket[14] = 'e';
  coapacket[15] = 's';
  coapacket[16] = 't';
  coapacket[17] = '\0';
 
  udp.beginPacket(serverIP, 5683);
  udp.write(coapacket);
  udp.endPacket();
}

Voilà tout!


Fichier(s) joint(s) :



Arduino : créer une horloge synchronisée

Dans cet article, nous allons voir comment afficher sur un écran la date et l'heure courantes, avec la possibilité de se synchroniser sur un serveur de temps public (NTP - Network Time Protocol), comme le font tous les PC ou téléphones.

Matériel

Pour cet exemple, il faut vous munir :

  • d'un arduino (ici un DUE)
  • un shield Ethernet
  • un module RTC (Real Time Clock, ici un Gravitech)
  • un écran LCD

Voici un schéma du montage :

L'écran est branché, de manière classique, sur des broches numériques. Le module RTC quant à lui est intégré sur le bus I2C par les broches SDA1 et SCL1.

Logiciel

Nous allons utiliser les librairies :

  • Ethernet
  • Wire1 (pour le bus I2C)
  • LiquidCrystal
  • Time (pour faciliter la décomposition de la date à partir d'un timestamp)

Données importantes :

Selon la spécification du constructeur, l'adresse de communication du module RTC sur le bus I2C est 0x68. Le serveur NTP choisi est celui de l'Observatoire de Paris (ntp-p1.obspm.fr, IP: 145.238.203.14). Le dialogue avec un serveur NTP se fait par échange de paquets par le protocole UDP.

C'est parti!

1. Configuration d'une date par défaut sur le module RTC

Commençons par un premier échange avec ce module :

const int I2C_address = 0x68;
...
Wire1.begin();        // join i2c bus (address optional for master)
Wire1.beginTransmission(I2C_address);// Début de transaction I2C
Wire1.write(0); // Arrête l'oscillateur
Wire1.write(0); // sec
Wire1.write(0x11); // min
Wire1.write(0x20); // heure
Wire1.write(6); // jour de la semaine
Wire1.write(0x20); // jour
Wire1.write(9); // mois
Wire1.write(0x14); // annee
Wire1.write(0); // Redémarre l'oscillateur
Wire1.endTransmission(); // Fin de transaction I2C

Ici nous définissons la date "20/09/2014 20:11:00". Remarquez que les valeurs transmises sont au format hexadécimal.

2. Lecture de la date sur le module RTC

Interrogeons notre module pour récupérer la date :

void getTime(char* tempData) {
 byte i = -1;
 byte error;
 
 Wire1.beginTransmission(I2C_address); // Début de transaction I2C
 Wire1.write(0); // Demande les info à partir de l'adresse 0 (soit toutes les info)
 error = Wire1.endTransmission(); // Fin de transaction I2C
 
 if(error==0) {
  Wire1.requestFrom(I2C_address, 7); // Récupère les info (7 octets = 7 valeurs correspondant à l'heure et à la date courante)
 
  while(Wire1.available())        
  {
   tempData[++i] = Wire1.read(); // receive a byte as character
  }
 } else {
  // le composant RTC n'etait pas joignable, on relance le bus I2C pour la prochaine fois
  Wire1.begin();
 }
}

Cette méthode nous permet de récupérer, dans un tableau de 7 char (tempData), les données du module.

3. Affichage de la date sur l'écran

void displayTime()
{
 char tempchar[7] = {'\0'};
 // recuperation de la date
 getTime(tempchar);
 // affichage
 if(tempchar[0]!='\0') {
  lcd.clear();
  lcd.setCursor(0, 0);
  lcd.print(tempchar[4],HEX);
  lcd.write("/");
  lcd.print(tempchar[5],HEX);
  lcd.write("/20");
  lcd.print(tempchar[6],HEX);
  lcd.setCursor(0, 1);
  lcd.print(tempchar[2],HEX);
  lcd.write(":");
  lcd.print(tempchar[1],HEX);
  lcd.write(":");
  lcd.print(tempchar[0],HEX);
 }
}

Avec cette méthode, on envoie à l'écran chaque caractère (toujours au format hexadecimal) retourné par l'appel au module RTC.

Il ne vous reste plus qu'à placer l'appel à cette méthode dans une boucle toutes les secondes pour voir défiler le temps. Essayez même de couper l'alimentation du module RTC : l'affichage de l'heure se fige, jusqu'à nouvelle alimentation du module. Elle sera alors mise à jour avec la date qui a continué à défiler grâce à la pile du module.

4. Interrogation du serveur de temps

Le shield Ethernet va nous permettre de contacter le serveur public et de récupérer les informations de date "de référence".

IPAddress timeServer(145, 238, 203, 14); // ntp-p1.obspm.fr (IP: 145.238.203.14)
const int NTP_PACKET_SIZE= 48; // NTP time stamp is in the first 48 bytes of the message
uint8_t packetBuffer[ NTP_PACKET_SIZE]; //buffer to hold incoming and outgoing packets
/* Set this to the offset (in seconds) to your local time
   GMT - 2 */
const long timeZoneOffset = -7200L;  
// A UDP instance to let us send and receive packets over UDP
EthernetUDP udpClient;
EthernetClient client;

/**
* Démarrage des librairies
*/
Ethernet.begin(mac);
udpClient.begin(8888); // port UDP local


/**
* Envoi de la requete 
*/
// set all bytes in the buffer to 0
memset(packetBuffer, 0, NTP_PACKET_SIZE);
// Initialize values needed to form NTP request
// (see URL above for details on the packets)
packetBuffer[0] = 0b11100011;   // LI, Version, Mode
packetBuffer[1] = 0;     // Stratum, or type of clock
packetBuffer[2] = 6;     // Polling Interval
packetBuffer[3] = 0xEC;  // Peer Clock Precision
// 8 bytes of zero for Root Delay & Root Dispersion
packetBuffer[12]  = 49;
packetBuffer[13]  = 0x4E;
packetBuffer[14]  = 49;
packetBuffer[15]  = 52;

// all NTP fields have been given values, now
// you can send a packet requesting a timestamp:
udpClient.beginPacket(timeServer, 123); //NTP requests are to port 123
udpClient.write(packetBuffer,NTP_PACKET_SIZE);
udpClient.endPacket();


/**
* Parcours de la réponse du serveur
*/
unsigned long epoch = 0;
if ( udpClient.parsePacket() ) {
 // We've received a packet, read the data from it
 udpClient.read(packetBuffer,NTP_PACKET_SIZE);  // read the packet into the buffer

 //the timestamp starts at byte 40 of the received packet and is four bytes,
 // or two words, long. First, esxtract the two words:

 unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);
 unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);
 // combine the four bytes (two words) into a long integer
 // this is NTP time (seconds since Jan 1 1900):
 unsigned long secsSince1900 = highWord << 16 | lowWord;

 // now convert NTP time into everyday time:
 // Unix time starts on Jan 1 1970. In seconds, that's 2208988800:
 const unsigned long seventyYears = 2208988800UL + timeZoneOffset;
 // subtract seventy years:
 epoch = secsSince1900 - seventyYears;
}


/**
* Configuration du module RTC avec la nouvelle date
*/
setTime(epoch); // on affecte le timestamp récupéré à la librairie Time
Wire1.beginTransmission(I2C_address);// Début de transaction I2C
Wire1.write(0); // Arrête l'oscillateur
String strval = String(second(), DEC);
Wire1.write(strtol(strval.c_str(),NULL, HEX)); // sec
strval = String(minute(), DEC);
Wire1.write(strtol(strval.c_str(),NULL, HEX)); // min
strval = String(hour(), DEC);
Wire1.write(strtol(strval.c_str(),NULL, HEX)); // heure
Wire1.write(weekday()-1); // jour de la semaine
strval = String(day(), DEC);
Wire1.write(strtol(strval.c_str(),NULL, HEX)); // jour
strval = String(month(), DEC);
Wire1.write(strtol(strval.c_str(),NULL, HEX)); // mois
strval = String(year(), DEC);
Wire1.write(strtol(strval.c_str(),NULL, HEX)); // annee
Wire1.write(0); // Redémarre l'oscillateur
Wire1.endTransmission(); // Fin de transaction I2C

La librairie Time nous permet de décomposer facilement les données de la date. Mais le serveur NTP nous a envoyé la date au format décimal "20/09/2014 20:11:00". Il faut donc convertir les données au format hexa avant de configurer le module RTC.

Ainsi, après l'appel à ce code (à découper en méthodes pour plus de clarté), l'affichage de la date sera automatiquement actualisé avec la date de référence.

Have fun!

Sources :


Fichier(s) joint(s) :



Utiliser les librairies Arduino dans Atmel Studio

Dans cet article je vais vous présenter comment démarrer un projet simple (exemple Blink) avec un Arduino Due, Atmel Studio 6.2 et les librairies du projet Arduino.

Pour commencer, vous pouvez suivre cet article très clair et très simple pour initier l'environnement : http://www.engblaze.com/tutorial-using-atmel-studio-6-with-arduino-projects/

Datant cependant de 2012, il mérite quelques mises à jour : il vous faudra télécharger la dernière version du software Arduino capable de gérer le Due. Les chemins vers les répertoires à inclure seront donc légèrement différents, puisque spécifiques à la plateforme (par ex ".\hardware\arduino\sam\variants\arduino_due_x"). Il faudra également ajouter dans le Linker un lien vers la librairie libsam_sam3x8e_gcc_rel située sous ".\hardware\arduino\sam\variants\arduino_due_x".

Il se peut que vous rencontriez des petites erreurs de compilation, que vous pourrez résoudre à la main en commentant/déplaçant du code.

Voici maintenant la nouvelle version de l'exemple Blink :

#include "sam.h"
#include "Arduino.h"


int led = 53;

/**
 * \brief SysTick_Handler.
 */
void SysTick_Handler(void)
{
 /* Increment counter necessary in delay(). */
 TimeTick_Increment();
}

/**
 * \brief Application entry point.
 *
 * \return Unused (ANSI-C compatibility).
 */
int main(void)
{
    /* Initialize the SAM system */
    SystemInit();
    SysTick_Config(SystemCoreClock / 1000); //1ms per interrupt
 
    pinMode(led, OUTPUT);

    while (1) 
    {
        digitalWrite(led, HIGH);   // turn the LED on (HIGH is the voltage level)
        delay(1000);               // wait for a second
        digitalWrite(led, LOW);    // turn the LED off by making the voltage LOW
        delay(1000);
    }
}

Pour faire fonctionner la méthode delay, il est nécessaire d'ajouter le code activant l'incrémentation du compteur systeme :

void SysTick_Handler(void)
{
 /* Increment counter necessary in delay(). */
 TimeTick_Increment();
}
...
SysTick_Config(SystemCoreClock / 1000); //1ms per interrupt

Ainsi, la méthode d'incrémentation TimeTick_Increment sera appelée par l'handler interne au processeur SysTick_Handler toutes les 1ms comme indiqué par SysTick_Config

Ne reste plus qu'à indiquer la plateforme cible à la compilation (processeur SAM3X8E) et lancer la programmation!

Edit : il est également possible d'appeler la méthode Arduino TimeTick_Configure(SystemCoreClock)


Fichier(s) joint(s) :